21 research outputs found

    Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces.

    Get PDF
    Although adhesive interactions between cells and nanostructured interfaces have been studied extensively, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells towards higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces

    Quantitative analysis of single bacterial chemotaxis using a linear concentration gradient microchannel

    Get PDF
    A microfluidic device to quantify bacterial chemotaxis has been proposed, which generates a linear concentration gradient of chemoattractant in the main channel only by convective and molecular diffusion, and which enables the bacteria to enter the main channel in a single file by hydrodynamic focusing technique. The trajectory of each bacterium in response to the concentration gradient of chemoattractant is photographed by a CCD camera and its velocity is acquired by a simple PTV (Particle Tracking Velocimetry) algorithm. An advantage of this assay is to measure the velocity of a single bacterium and to quantify the degree of chemotaxis by analyzing the frequency of velocities concurrently. Thus, the parameter characterizing the motility of wild-type Escherichia coli strain RP437 in response to various concentration gradients of L-aspartate is obtained in such a manner that the degree of bacterial chemotaxis is quantified on the basis of a newly proposed Migration Index

    Green Synthesis of Nanoparticles Using Bio-Inspired Systems and Electrically Conductive Pattern Fabrication through Laser-Direct Writing

    No full text
    Systems existing in nature have evolved to operate efficiently over a long period of time, enabling efficient material transformation and processing. These natural systems provide hints for the synthesis of metal nanoparticles through efficient electron generation and transport towards metal ions for the reduction process. In this study, based on the efficient electron transfer mechanism between tryptophan (Trp) in the living body, the possibility of advanced silver patterning on flexible substrates has been presented through laser-direct writing. Irradiation of a low-power laser on the precursor induces the reduction of silver ions to nanoparticles. The sintering of these generated nanoparticles induces a silver conductive pattern by a photothermal/chemical reaction. The method of this study has strength as it supports the possibility of conductive pattern fabrication on various substrates (e.g., glass and PDMS) using a silver-based organic ink with low laser power compared to the conventional nanoparticle-based sintering method. It also suggests its suitability to various applications in terms of sophisticated pattern fabrication with minimized substrate denaturation

    Advanced Micro-Actuator/Robot Fabrication Using Ultrafast Laser Direct Writing and Its Remote Control

    No full text
    Two-photon polymerization (TPP) based on the femtosecond laser (fs laser) direct writing technique in the realization of high-resolution three-dimensional (3D) shapes is spotlighted as a unique and promising processing technique. It is also interesting that TPP can be applied to various applications in not only optics, chemistry, physics, biomedical engineering, and microfluidics but also micro-robotics systems. Effort has been made to design innovative microscale actuators, and research on how to remotely manipulate actuators is also constantly being conducted. Various manipulation methods have been devised including the magnetic, optical, and acoustic control of microscale actuators, demonstrating the great potential for non-contact and non-invasive control. However, research related to the precise control of microscale actuators is still in the early stages, and in-depth research is needed for the efficient control and diversification of a range of applications. In the future, the combination of the fs laser-based fabrication technique for the precise fabrication of microscale actuators/robots and their manipulation can be established as a next-generation processing method by presenting the possibility of applications to various areas

    Flexible Heater Fabrication Using Amino Acid-Based Ink and Laser-Direct Writing

    No full text
    Nature’s systems have evolved over a long period to operate efficiently, and this provides hints for metal nanoparticle synthesis, including the enhancement, efficient generation, and transport of electrons toward metal ions for nanoparticle synthesis. The organic material-based ink composed of the natural materials used in this study requires low laser power for sintering compared to conventional nanoparticle ink sintering. This suggests applicability in various and sophisticated pattern fabrication applications without incurring substrate damage. An efficient electron transfer mechanism between amino acids (e.g., tryptophan) enables silver patterning on flexible polymer substrates (e.g., PET) by laser-direct writing. The reduction of silver ions to nanoparticles was induced and sintered by simultaneous photo/thermalchemical reactions on substrates. Furthermore, it was possible to fabricate a stable, transparent, and flexible heater that operates under mechanical deformation

    Selective epitaxial growth of stepwise SiGe:B at the recessed sources and drains: A growth kinetics and strain distribution study

    No full text
    The selective epitaxial growth of Si1-xGex and the related strain properties were studied. Epitaxial Si1-xGex films were deposited on (100) and (110) orientation wafers and on patterned Si wafers with recessed source and drain structures via ultrahigh vacuum chemical vapor deposition using different growing steps and Ge concentrations. The stepwise process was split into more than 6 growing steps that ranged in thicknesses from a few to 120 nm in order to cover the wide stages of epitaxial growth. The growth rates of SiGe on the plane and patterned wafers were examined and a dependence on the surface orientation was identified. As the germanium concentration increased, defects were generated with thinner Si1-xGex growth. The defect generation was the result of the strain evolution which was examined for channel regions with a Si1-xGex source/drain (S/D) structure

    Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes

    No full text
    The first stretchable energy harvesting e-skin (EHES) that is able to detect, differentiate, and harvest a variety of mechanical stimuli, enabled by the stretchability of the device and a unique device architecture was reported. Using PDMS microstructuring in combination with an air gap, the researchers enabled pressure sensing from several pascals to tens of kilopascals. The device was capable of differentiating different tactile signals by measuring three different output signals (capacitance, resistance of the top and resistance of the bottom electrode). The capacitive design was important since the top and the bottom electrodes needed to be electrically isolated so that the measured change in film resistance was only due to the lateral straining of each film, not due to the electrical conduction between the top and bottom electrodes. Capacitive sensor design also enabled energy-harvesting functionality along with its sensing capability. envision that our energy-harvesting e-skin and the concepts introduced here can be utilized in the future to enable a fully self-sustainable skin-like devices with stretchability, multifunctional tactile sensing, and energy-harvesting capability © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim11451551sciescopu
    corecore